Modelos Ocultos de Markov

Un modelo oculto de Markov o HMM (por sus siglas del inglés, Hidden Markov Model), es un proceso por el cual se observa el comportamiento del sistema de manera indirecta pues los estados del mismo permanecen ocultos para el observador.

 

El objetivo principal es encontrar los valores desconocidos a partir de parámetros observables, estos modelos describen un proceso de probabilidad el cual produce una secuencia de parámetros observables, se denominan ocultos por que existe probabilidades ocultas que afectan al resto de estados observados.

 

Un modelo oculto de Markov es un conjunto finito de estados probabilísticos, en el que el estado esta conectado a otro por un arco de transición, en donde cada arco tiene diversas probabilidades que pueden cambiar en algún instante del tiempo, entonces se puede decir que el sistema se encuentra en uno de los posibles estados y habrá un cambio de un estado a otro en intervalos iguales de tiempo.

 

Figura 1. Ejemplo de un modelo de Markov [1]

 

Probabilidad de que el día permanezca, lluvioso, nubloso soleado

 

Cada estado (S + 1) depende del estado anterior S y no del progreso del sistema.

 

Tipos de HMM

Los modelos ocultos de Markov se clasifican según la función de la matriz de distribuciones de probabilidad de emisión, estos son:

 

 

HMM discretos

En este modelo las observaciones son vectores de símbolos de un alfabeto finito con M + 1 elementos diferentes, en este caso se define el número de símbolo observables M, el conjunto de estados, y las probabilidades que definen el modelo oculto de Markov.

 

HMM continuos

Las probabilidades que dominan la emisión de los parámetros observables están definidas sobre espacios de observación continuos, se restringe la forma de distribuciones para obtener un número manejable de parámetro a estimar.

 

 

HMM semicontinuos

Para aplicar este modelo se debe realizar un entrenamiento a varios modelos con bases de datos limitadas, estos modelos al igual que los continuos se realizan a partir de combinaciones de distribuciones probabilísticas. La diferencia de estos modelos es que las funciones base son comunes en todos los modelos.

 Autor: Auliria Torres

Referencias

[1] Luís Miguel Bergasa Pascual, Introducción a los modelos ocultos de Markov, Departamento de electrónica, Universidad de Alcalá, disponible en: http://www.depeca.uah.es/docencia/doctorado/cursos04_05/82854/docus/HMM.pdf

 

[2] Redes Neuronales y Modelos Ocultos de Markov, disponible en: http://catarina.udlap.mx/u_dl_a/tales/documentos/lis/clemente_f_e/capitulo2.pdf

 

[3] Basilio Sierra Araujo, Aprendizaje Automático: Conceptos básicos y avanzados.




    Responder

    Introduce tus datos o haz clic en un icono para iniciar sesión:

    Logo de WordPress.com

    Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

    Imagen de Twitter

    Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

    Foto de Facebook

    Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

    Google+ photo

    Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

    Conectando a %s



A %d blogueros les gusta esto: