Posts Tagged ‘IAA’

PARADIGMAS DE APRENDIZAJE AUTOMÁTICO

¿Qué es el aprendizaje automático?

Es una rama de la Inteligencia Artificial que tiene como objetivo el desarrollar técnicas que permitan que las computadoras puedan aprender.

Es decir, crear programas que sean capaces de generalizar los comportamientos partiendo de una información que no esté estructurada suministrada en forma de ejemplos.

Para ver artículo completo ir al siguiente enlace:

http://robpau007.wordpress.com/

Por: Roberth Paúl Bravo Castro

Aprendizaje por Refuerzo

APRENDIZAJE POR REFUERZO

Existen algunas formas de aprendizaje de los agentes inteligentes, el aprendizaje entra en juego cuando el agente observa sus iteraciones con el mundo y sus procesos de toma de decisiones. Existen tres formas de aprendizaje: Aprendizaje supervisado, no supervisado y el aprendizaje por refuerzo.

El aprendizaje por refuerzo consiste en aprender a decidir, ante una situación determinada, que acción es la más adecuad para lograr un objetivo. Consta de dos componentes. Componente selectiva que involucra la selección de la mejor acción a ejecutar de entre varias opciones y la componente asociativa, en el sentido de que las alternativas encontradas se asocian a situaciones particulares en que se tomaron.

El aprendizaje por refuerzo es adecuado cuando no existe un conocimiento “a priori” del entorno o este es demasiado complejo como para utilizar otros métodos.

MODELO DE APRENDIZAJE POR REFUERZO

Un agente hardware y software está conectado a su entorno vía percepción y acción. En cada instante el agente recibe desde l entorno a través de sensores el estado en el que se encuentra, s; entonces el agente decide ejecutar una acción, a , que genera como salida. Esta salida cambia el estado del entorno a s’, que es transmitido al agente junto a una señal de refuerzo r. esta señal informa al agente de la utilidad de ejecutar la acción a, desde el estado s para lograr un objetivo concreto. Este modelo se ilustra en la siguiente figura:

Figura1. Modelo de Aprendizaje por Refuerzo

El aprendizaje puede ser pasivo y activo.

En el aprendizaje pasivo la política del agente está fijada y la tarea es aprender las utilidades de los estados (o parejas estado acción) mientras que el aprendizaje activo el agente debe aprender también que hacer. El esfuerzo activo además de recoger información del entorno utilizará ésta para tomar decisiones sobre la siguiente acción a realizar.

El objeto del aprendizaje mediante el refuerzo es un comportamiento que permite resolver problemas óptimamente. Un comportamiento no es más que un conjunto de acciones que se realizan para resolver un problema y política al conjunto de acciones que se realizan en cada situación para resolver un problema.

Debido a que se produce una señal de esfuerzo. Esta se divide en inmediata o retardada

REFUERZO INMEDIATO

En éste refuerzo se obtiene una crítica para cada acción efectuada justo después de su realización. La información que aporta el refuerzo inmediato es local a cada acción tomada. Debe aprenderse una acción a realizar en cada situación para obtener un refuerzo positivo después de su ejecución.

Existen diversos algoritmos para el aprendizaje por refuerzo inmediato como:

  • ALGORITMO LINEAL DE PREMIO-CASTIGO
  • ALGORITMO LINEAL DE REFUERZO – INACCION

ü REFUERZO RETARDADO

Este refuerzo es más complicado ya que no tenemos una crítica para cada acción sino una estimación global del comportamiento. Se presenta cuando no se completa la secuencia de acciones empleadas para resolver el problema

Al ejecutar una acción el refuerzo no solo depende de ella sino también de las realizadas anteriormente.

REFUERZO PASIVO

Solo tenemos una estimación global del comportamiento y no una crítica para cada acción realizada, con lo cual el problema se complica. El esfuerzo obtenido al ejecutar una acción no depende únicamente de ella sino también de las realizadas anteriormente. El entorno genera las transiciones y el agente las percibe.

BIBLIOGRAFIA

MoMORENO A., Armengol E, Béjar J., Sánchez M., “Aprendizaje Automático”, 1994

Dr COOK Peter, “Intelligent Systems-Fusion, Tracking and Control”, 2003

RUSELL Stuart, NORVING Peter , “Inteligencia Artificia Un Enfoque Moderno”

BAARAUJO Basilo, “Aprendizaje Automático: Conceptos Básicos y Avanzados” ,2006

http://www.fleifel.net/ia/robotsyaprendizaje.php

http://www.cs.us.es/~delia/sia/html98-99/pag-alumnos/web10/indice.html

Redes Bayesianas

REDES BAYESIANAS

Figura 1. Redes Bayesianas

El estudio de las redes bayesianas son diseñadas con el fin de hallar las relaciones de dependencia e independencia entre todas las variables que conforman un dominio de estudio. De ésta manera permite realizar predicciones sobre el comportamiento de cualquiera de las variables desconocidas a partir de los valores de las otras variables conocidas.

Es un grafo acíclico dirigido en el que cada nodo representa una variable aleatoria y cada arco una dependencia probabilística. Proveen una forma compacta de representar el conocimiento y métodos flexibles de razonamiento.

Una red bayesiana tiene dos componentes principales: cualitativo y cuantitativo.

ü En el campo cualitativo tenemos un grafo acíclico dirigido en el que cada nodo corresponde a un atributo (variable), y arcos dirigidos implicando que toda variable es condicionalmente independiente de todos sus no descendientes en la red siempre que se conozcan los valores de sus inmediatos predecesores

ü En el campo cuantitativo cada nodo tiene asociada la distribución de probabilidad de esa variable teniendo en cuenta sus padres en el grafo.

Existen distintos tipos de Redes Bayesianas:

  • Naive Bayes
  • DBNs = Redes Bayesianas Dinámicas: Cambian con el tiempo (t, t+1, t+2…) y lo pasado en t, tiene relación con lo que suceda en t+1
  • Redes Gaussianas = distribución gaussiana: Para nodos con variables contínuas
  • Cadenas de Markov = subconjunto de las RB: Ejemplos: aire acondicionado

Aprendizaje en las Redes Bayesianas

Aprendizaje Paramétrico

En éste tipo de aprendizaje, dada la estructura, obtenemos las probabilidades asociadas. Aprende las probabilidades de la red en base a casos dados, por ejemplo un archivo pasado con los valores de cada variable.

Existen distintos algoritmos de aprendizaje, entre ellos:

  • EM (Expansión-Maximización): No necesita datos completos para el aprendizaje. Este contiene 2 fases:
  • Expansión: calculo de todas las probabilidades posibles por toda la red.
  • Maximización: se escoge la mayor probabilidad
  • ML (Maximum Likelihood): Necesita de datos completos para poder aprender. Es parecido al EM, pero sin la primera fase , es decir sin expansión.

Aprendizaje Estructural.

Consiste en encontrar las relaciones de dependencia entre las variables, de manera que se pueda determinar la topología o estructura de la red bayesiana. De acuerdo al tipo de estructura, podemos dividir métodos de aprendizaje en:

  • Aprendizaje de arboles
  • Aprendizaje de poliarboles
  • Aprendizaje de redes interconectadas

Estos algoritmos son capaces de aprender enlaces. También los podríamos clasificar en dos tipos de aprendizaje:

ü Basados en tests de independencia (algoritmos PC, NPC…)

Puntuación y búsqueda (Score & Search)

Aplicaciones:

Las Naive Bayes son aplicadas en la minería de datos Naive Bayes puede hacer predicciones para problemas multiclase, en los cuales hay varios resultados posibles. Por ejemplo, se puede construir un modelo para averiguar si un cliente en una organizaci;on o empresa será fiel o cambiará de proveedores. Se aplica tambien a un dominio médico e industrial, lo cuál permiten el uso de tiempo absoluto.

ž

Bibliografía

LOPEZ Carlos. CLASIFICADORES POR REDES BAYESIANAS [Consultado en línea]. Disponible en: http://grad.uprm.edu/tesis/lopezdecastilla.pdf

RUIZ José. Introducción a las Redes Bayesianas [Consultado en línea]. Disponible en: http://jorge.sistemasyservidores.com/si_2008i/clases/claseiarazonamientoprobabilistico.pdf

ROCHE Francisco. METODOS PARA OBTENER CONOCIMIENTO UTILIZANDO REDES BAYESIANAS Y PROCESOS DE APRENDIZAJE CON ALGORITMOS EVOLUTIVOS. [Consultado en línea]. Disponible en: http://www.lsi.us.es/docs/doctorado/memorias/TESINA-Roche.pdf

El sistema de neuronas biológico está compuesto por neuronas de entrada (censores) conectados a una compleja red de neuronas “calculadoras” (neuronas ocultas), las cuales, a su vez, están conectadas a las neuronas de salidas que controlan, por ejemplo, los músculos.

Para ver artículo completo ir al siguiente enlace: http://robpau007.wordpress.com/2008/08/08/redes-neuronales/

REDES NEURONALES (RNA)

Introducción

Las Redes Neuronales surgieron del movimiento conexionista, que nació junto con la Inteligencia Artificial (IA) simbólica o tradicional. Esto fue hacia los años 50, con algunos de los primeros ordenadores de la época y las posibilidades que ofrecían. La IA simbólica se basa en que todo conocimiento se puede representar mediante combinaciones de símbolos, derivadas de otras combinaciones que representan verdades incuestionables o axiomas. Así pues, la IA tradicional asume que el conocimiento es independiente de la estructura que maneje los símbolos, siempre y cuando la ‘máquina’ realice algunas operaciones básicas entre ellos [2].

Definición

Una red neuronal artificial (Artificial Neural Network, ANN), es un procesador masivamente paralelo distribuido que es propenso por naturaleza a almacenar conocimiento experimental y hacerlo disponible para su uso. Este mecanismo se parece al cerebro en dos aspectos:

 

1.      El conocimiento es adquirido por la red a través de un proceso que se denomina aprendizaje.

2.      El conocimiento se almacena mediante la modificación de la fuerza o peso sináptico de las distintas uniones entre neuronas [1].


 ELEMENTOS BÁSICOS QUE COMPONEN UNA RED NEURONAL.

A continuación se puede ver, en la Figura, un esquema de una red neuronal:

La misma está constituida por neuronas interconectadas y arregladas en tres capas (esto último puede variar). Los datos ingresan por medio de la “capa de entrada”, pasan a través de la “capa oculta” y salen por la “capa de salida”. Cabe mencionar que la capa oculta puede estar constituida por varias capas.

Los elementos que permiten clasificar los diferentes tipos de redes son los siguientes aspectos:

  • Número y disposición de las neuronas.
  • No-linealidad presente en cada neurona.
  • Red de Interconexión.
  • Algoritmo de entrenamiento.
  • Comportamiento estático y dinámico [3].

 

VENTAJAS QUE OFRECEN LAS REDES NEURONALES

 

Debido a su constitución y a sus fundamentos, las redes neuronales artificiales presentan un gran número de características semejantes a las del cerebro. Por ejemplo, son capaces de aprender de la experiencia, de generalizar de casos anteriores a nuevos casos, de abstraer características esenciales a partir de entradas que representan información irrelevante, etc. Esto hace que ofrezcan numerosas ventajas y que este tipo de tecnología se esté aplicando en múltiples áreas. Entre las ventajas se incluyen:

 

Aprendizaje Adaptativo. Capacidad de aprender a realizar tareas basadas en un entrenamiento o en una experiencia inicial.

 

Auto-organización. Una red neuronal puede crear su propia organización o representación de la información que recibe mediante una etapa de aprendizaje.

 

Tolerancia a fallos. La destrucción parcial de una red conduce a una degradación de su estructura; sin embargo, algunas capacidades de la red se pueden retener, incluso sufriendo un gran daño.

 

Operación en tiempo real. Los cómputos neuronales pueden ser realizados en paralelo; para esto se diseñan y fabrican máquinas con hardware especial para obtener esta capacidad.

 

Fácil inserción dentro de la tecnología existente. Se pueden obtener chips especializados para redes neuronales que mejoran su capacidad en ciertas tareas. Ello facilitará la integración modular en los sistemas existentes [4].

 

Por: Lourdes Morocho

REFERENCIAS:

[1]  Blanco, Vega Ricardo, Extracción de Reglas de Redes Neuronales Artificiales, Universidad Politécnica de Valencia, Departamento de Sistemas Informáticos y Computación, tomado de PresentaER.pps, disponible en: http://www.dsic.upv.es/~rblanco

[2]  Introducción a las Redes Neuronales, Xavier Padern disponible en:

http://www.redcientifica.com/doc/doc199903310003.html

 

[3] Aprendizaje Automático: conceptos básicos y avanzados (2006), Basilio Sierra Araujo.

[4] Universidad Tecnológica Nacional – Facultad Regional Rosario Departamento de Ingeniería Química Grupo de Investigación Aplicada a la Ingeniería Química (GIAIQ). Redes Neuronales: Conceptos Básicos y Aplicaciones.pdf

 

Modelos Ocultos de Markov

Un modelo oculto de Markov o HMM (por sus siglas del inglés, Hidden Markov Model), es un proceso por el cual se observa el comportamiento del sistema de manera indirecta pues los estados del mismo permanecen ocultos para el observador.

 

El objetivo principal es encontrar los valores desconocidos a partir de parámetros observables, estos modelos describen un proceso de probabilidad el cual produce una secuencia de parámetros observables, se denominan ocultos por que existe probabilidades ocultas que afectan al resto de estados observados.

 

Un modelo oculto de Markov es un conjunto finito de estados probabilísticos, en el que el estado esta conectado a otro por un arco de transición, en donde cada arco tiene diversas probabilidades que pueden cambiar en algún instante del tiempo, entonces se puede decir que el sistema se encuentra en uno de los posibles estados y habrá un cambio de un estado a otro en intervalos iguales de tiempo.

 

Figura 1. Ejemplo de un modelo de Markov [1]

 

Probabilidad de que el día permanezca, lluvioso, nubloso soleado

 

Cada estado (S + 1) depende del estado anterior S y no del progreso del sistema.

 

Tipos de HMM

Los modelos ocultos de Markov se clasifican según la función de la matriz de distribuciones de probabilidad de emisión, estos son:

 

 

HMM discretos

En este modelo las observaciones son vectores de símbolos de un alfabeto finito con M + 1 elementos diferentes, en este caso se define el número de símbolo observables M, el conjunto de estados, y las probabilidades que definen el modelo oculto de Markov.

 

HMM continuos

Las probabilidades que dominan la emisión de los parámetros observables están definidas sobre espacios de observación continuos, se restringe la forma de distribuciones para obtener un número manejable de parámetro a estimar.

 

 

HMM semicontinuos

Para aplicar este modelo se debe realizar un entrenamiento a varios modelos con bases de datos limitadas, estos modelos al igual que los continuos se realizan a partir de combinaciones de distribuciones probabilísticas. La diferencia de estos modelos es que las funciones base son comunes en todos los modelos.

 Autor: Auliria Torres

Referencias

[1] Luís Miguel Bergasa Pascual, Introducción a los modelos ocultos de Markov, Departamento de electrónica, Universidad de Alcalá, disponible en: http://www.depeca.uah.es/docencia/doctorado/cursos04_05/82854/docus/HMM.pdf

 

[2] Redes Neuronales y Modelos Ocultos de Markov, disponible en: http://catarina.udlap.mx/u_dl_a/tales/documentos/lis/clemente_f_e/capitulo2.pdf

 

[3] Basilio Sierra Araujo, Aprendizaje Automático: Conceptos básicos y avanzados.

Redes Bayesianas

Las Redes Bayesianas son un grafo acíclico dirigido que consta de nodos que representan las variables aleatorias y los arcos son las dependencias probabilísticas de cada variable, las redes bayesianas son un conjunto de variables aleatorias representadas en un grafo dirigido, el arco entre dos variables x e y, significa una influencia directa de x sobre y.

 

Los nodos son cualquier variable como por ejemplo variables que se pueden medir, variables latentes o hipótesis. Las redes bayesianas son utilizadas para sistemas expertos y se pueden utilizar diversos tipos de algoritmos para recopilar conocimiento par a estos sistemas.

 

Figura 1. Ejemplo de una red bayesiana [1]

 

 

Los nodos representan variables aleatorias y los arcos las relaciones de dependencia. En esta red observamos que [1]:

  • Caries es una causa directa de Dolor y Huecos
  • Dolor y Huecos son condicionalmente independientes dada Caries
  • Tiempo es independiente de las restantes variables

 

Existen diferentes tipos de redes bayesianas [2]:

 

  • Naive Bayes = bayes “ingenuo” o Idiot’s Bayes

Forma de “V” => 2 ^ n estados en el nodo inferior

 

  • DBNs = Redes Bayesianas Dinámicas

Cambian con el tiempo (t, t+1, t+2…)

Lo pasado en t, tiene relación con lo que suceda en t+1

 

  • Redes Gaussianas = distribución gaussiana

Para nodos con variables continuas

 

  • Cadenas de Markov = subconjunto de las RB

 

Aplicaciones

Las redes bayesianas tienen múltiples aplicaciones, se puede aplicar este modelo en empresas que necesiten diagnosticar problemas o fallos o también para minería de datos.

A continuación tenemos algunos campos en donde podemos aplicar las redes bayesianas [3]:

 

 

  • Prevención del fraude
  • Prevención del abandono de clientes
  • Blanqueo de dinero
  • Marketing personalizado
  • Mantenimiento preventivo
  • Clasificación de datos estelares

Aplicaciones en empresas [1]:

 

  • Microsoft: Answer Wizard (Office), diagnostico de problemas de impresora.
  • Intel: Diagnostico de fallos de procesadores
  • HP: Diagnostico de problemas de impresora
  • Nasa: Ayuda a la decisión de misiones espaciales

 Por: Auliria Torres

Referencias

 

[1] José L. Ruiz Reina, Introducción a las Redes Bayesianas, Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla, disponible en:

http://www.cs.us.es/cursos/ia2-2005/temas/tema-08.pdf

[2] Álvaro Marín Illera, Sistemas Expertos, Redes Bayesianas y sus aplicaciones, Semana ESIDE, Abril 2005, Universidad de Deusto, disponible en:

http://www.e-ghost.deusto.es/docs/2005/conferencias/Bayes05.pdf

 

[3] Red bayesiana, disponible en: http://es.wikipedia.org/wiki/Red_bayesiana

 

[4] Jorge Luís Guevara Díaz, Redes Bayesianas, disponible en: http://jorge.sistemasyservidores.com/si_2008i/clases/claseiarazonamientoprobabilistico.pdf

 

[5] Carlos López de Castilla Vásquez, Clasificadores Por Redes Bayesianas, Universidad de Puerto Rico, disponible en:

http://grad.uprm.edu/tesis/lopezdecastilla.pdf

 

 

Tipos de Conocimiento

El conocimiento es un conjunto de datos, los cuales en conjunto constituyen información sobre un hecho. El conocimiento se forma de la información obtenida a lo largo del tiempo sobre como funcionan las cosas.

Existen dos tipo de conocimiento: el explícito y el tácito.

El conocimiento explícito: Este conocimiento se lo puede expresar en palabras y números, puede ser fácilmente transmitido y compartido en forma de representaciones en medios codificados, fórmulas científicas o principios globales o universales.

El conocimiento tácito: está muy personalizado y su formalización es compleja. Por lo que es difícil de transmitir ya que no ha adoptado una forma explícita. [1]

En el “modelo de ciclos de producción del conocimiento”, se expresan los siguientes procesos de conversión del conocimiento:

1.    De tácito a tácito (Proceso de socialización): Los individuos adquieren nuevos conocimientos directamente de otros.
2.    De tácito a explícito (Proceso de externalización): El conocimiento se articula de una manera tangible a través del dialogo.
3.    De explícito a explícito (Proceso de combinación): Se combinan diferentes formas de conocimiento explícito mediante documentos o bases de datos.
4.    De explícito a tácito (Proceso de internalización): Los individuos internalizan el conocimiento de los documentos en su propia experiencia.[1]

La gestión del conocimiento tiene principalmente los siguientes objetivos:

Identificar, recoger y organizar el conocimiento existente.
Facilitar la creación del nuevo conocimiento.
Iniciar la innovación a través de la reutilización y apoyo de la habilidad de la gente a través de organizaciones para producir un realzado funcionamiento de negocio. [2]

La gestión del conocimiento es la base para el desarrollo de la sociedad, nos permite incrementar las investigaciones en todos lo campos existentes y ampliar las fronteras del saber.

Referencias
[1] Luís Alvarado Acuña, La Gestión del Conocimiento y la utilización de las Tecnologías de la Información y de las comunicaciones en la creación de valor en los proyectos de Innovación, disponible en:
http://www.monografias.com/trabajos12/lagc/lagc.shtml#INNOVAC

[2] Juan Carrión Maroto,  INTRODUCCIÓN CONCEPTUAL A LA GESTIÓN DEL CONOCIMIENTO disponible en: http://www.gestiondelconocimiento.com/introduccion.htm

Los Modelos Ocultos de Markov (HMM) representan un proceso en el cual se refleja un alto grado de probabilidades, probabilidades que generan una secuencia de acciones o eventos que se pueden observar, lo que no ocurre con el proceso de probabilidad utilizado, este no es observable, pero sí afecta directamente a la secuencia de acciones que lo son. Los Modelos Ocultos de Markov pueden ser definidos como un modelo de un proceso, el cual genera una secuencia de acciones o eventos de un dominio específico.

La principal meta de los HMM es identificar los valores desconocidos u ocultos de la secuencia de acciones generada a partir de valores o parámetros observables. “Un HMM se puede considerar como la red bayesiana dinámica más simple”. Los valores que se obtengan, son analizados y sus resultados pueden ser utilizados para desarrollarlas distintas aplicaciones como: reconocimiento de patrones, Traducción automática, Bioinformática, etc.

Según el desarrollo de dichas aplicaciones o el análisis que se requiera se utiliza una arquitectura de Modelos Ocultos de Markov. Esta arquitectura viene dada por el número de estados (variable aleatoria) que lo componen y las transiciones o conexiones entre los estados. De igual manera ocurre en las redes neuronales, su arquitectura depende mucho del número de neuronas (estados) y las transiciones entre estas (conexiones sinápticas). Existen dos modelos principales que representan la arquitectura de un HMM: Modelos HMM de izquierda a derecha y Modelos HMM ergódicos.

En los modelos de izquierda a derecha, los elementos o las probabilidades que genera las acciones o eventos deben cumplir con una condición Aij = 0, donde j<i. Esto significa que, si el modelo se encuentra en un determinado tiempo (t), en el siguiente instante (t+1), el modelo permanecerá con el mismo valor de probabilidad Aii, de no ocurrir esto, el modelo pasará a un estado j-ésino con una probabilidad Aij. Este modelo es idóneo para aquellas aplicaciones en los cuales se sigue un proceso secuencial, por ejemplo: la identificación de blancos aéreos, en los cuales se utiliza una secuencia de entrenamiento para cada objetivo basados en un conjunto de observaciones almacenadas en un array.

Lo contrario ocurre con los modelos ergódicos, estos pueden evolucionar desde cualquier estado a otro en un número finito de transiciones, todas las transiciones son posibles. Este modelo es aplicado en proceso en los cuales se produce una toma de decisiones, otro ejemplo claro, es el reconocimiento de gestos, en el cual se utiliza una base de entrenamiento construida en base a la información obtenida de los gestos, esta base se ajusta a los valores, se la interrelaciona y se obtiene los resultados.

Los modelos deben ser seleccionados según la aplicación, deben ser ejecutados adecuadamente y cumplir con las condiciones que en cada modelo se estimen pertinentes.

Autores:

Daniel Valdivieso

Diego Guamán

Aprendizaje Automático

El Aprendizaje Automático es una rama de la Inteligencia Artificial en la cual su principal objetivo es desarrollar técnicas que permitan a las computadoras aprender, es decir, se considera como un proceso de inducción del conocimiento. El aprendizaje automático se centra en el estudio de la Complejidad Computacional de los problemas. Muchos problemas son de clase NP-hard, por lo que las aplicaciones desarrolladas en aprendizaje automático están enfocadas al diseño de soluciones viables a esos problemas.

Dentro de las aplicaciones de aprendizaje automático están: motores de búsqueda, diagnósticos médicos, detección de fraude en el uso de tarjetas de crédito, análisis del mercado de valores, clasificación de secuencias de ADN, reconocimiento del habla y del lenguaje escrito, juegos y robótica. Algunos expertos en el desarrollo de sistemas de aprendizaje automático han tratado de eliminar la intuición o el conocimiento de los procesos que se generan en la interacción hombre-máquina; otros, en cambio, tratan de establecer una colaboración entre estos dos elementos.

La participación humana y sus intuición no puede ser remplazada por una máquina, el humano, es decir, el experto que desarrolla estos sistemas es quién hace el diseño y determina los procesos que debe realizar el sistema o la máquina. Por lo tanto no puede ser remplazado, a excepción de algunas tareas o procesos que son automatizados para mejorar el rendimiento de estos sistemas.

A través del aprendizaje automático se puede generar tres tipos de conocimiento, cada tipo dependerá del tema que se desee aprender:

1. Crecimiento Es el que se adquiere de lo que nos rodea, el cual guarda la información en la memoria como si dejara huellas.

2. Reestructuración Al interpretar los conocimientos el individuo razona y genera nuevo conocimiento al cual se le llama de reestructuración.

3. Ajuste Es el que se obtiene al generalizar varios conceptos o generando los propios.

Existen algoritmos que son utilizados en el aprendizaje automático para la generación de conocimiento y el mejoramiento en el rendimiento de los sistemas computacionales. Son cinco los algoritmos utilizados, estos son:

1. Aprendizaje supervisado Produce una función que establece una correspondencia entre las entradas y las salidas deseadas del sistema.

2. Aprendizaje no supervisado Todo el proceso se lleva a cabo sobre un conjunto de ejemplos formado por entradas al sistema. No existe información de las categorías de esos ejemplos.

3. Aprendizaje por refuerzo El algoritmo aprende observando el mundo que le rodea. Su información de entrada es la retroalimentación que obtiene del exterior en función de sus acciones.

4. Transducción Similar al aprendizaje supervisado, pero no construye de forma explícita una función. Trata de predecir las categorías de los futuros ejemplos basándose en los ejemplos de entrada, sus respectivas categorías y ejemplos nuevos.

5. Aprendizaje multi-tarea Métodos de aprendizaje que usan conocimiento previamente aprendido por el sistema con el fin de enfrentarse a problemas similares a los vistos.

El aprendizaje automático se ha convertido en un eje fundamental de la Inteligencia Artificial. En la construcción de sistemas inteligentes, es necesario que estos aprendan y vayan adquiriendo experiencia conforme realizan sus procesos sin la necesidad de una supervisión por parte de expertos.

Autor: Daniel Valdivieso