REDES NEURONALES (RNA)

Introducción

Las Redes Neuronales surgieron del movimiento conexionista, que nació junto con la Inteligencia Artificial (IA) simbólica o tradicional. Esto fue hacia los años 50, con algunos de los primeros ordenadores de la época y las posibilidades que ofrecían. La IA simbólica se basa en que todo conocimiento se puede representar mediante combinaciones de símbolos, derivadas de otras combinaciones que representan verdades incuestionables o axiomas. Así pues, la IA tradicional asume que el conocimiento es independiente de la estructura que maneje los símbolos, siempre y cuando la ‘máquina’ realice algunas operaciones básicas entre ellos [2].

Definición

Una red neuronal artificial (Artificial Neural Network, ANN), es un procesador masivamente paralelo distribuido que es propenso por naturaleza a almacenar conocimiento experimental y hacerlo disponible para su uso. Este mecanismo se parece al cerebro en dos aspectos:

 

1.      El conocimiento es adquirido por la red a través de un proceso que se denomina aprendizaje.

2.      El conocimiento se almacena mediante la modificación de la fuerza o peso sináptico de las distintas uniones entre neuronas [1].


 ELEMENTOS BÁSICOS QUE COMPONEN UNA RED NEURONAL.

A continuación se puede ver, en la Figura, un esquema de una red neuronal:

La misma está constituida por neuronas interconectadas y arregladas en tres capas (esto último puede variar). Los datos ingresan por medio de la “capa de entrada”, pasan a través de la “capa oculta” y salen por la “capa de salida”. Cabe mencionar que la capa oculta puede estar constituida por varias capas.

Los elementos que permiten clasificar los diferentes tipos de redes son los siguientes aspectos:

  • Número y disposición de las neuronas.
  • No-linealidad presente en cada neurona.
  • Red de Interconexión.
  • Algoritmo de entrenamiento.
  • Comportamiento estático y dinámico [3].

 

VENTAJAS QUE OFRECEN LAS REDES NEURONALES

 

Debido a su constitución y a sus fundamentos, las redes neuronales artificiales presentan un gran número de características semejantes a las del cerebro. Por ejemplo, son capaces de aprender de la experiencia, de generalizar de casos anteriores a nuevos casos, de abstraer características esenciales a partir de entradas que representan información irrelevante, etc. Esto hace que ofrezcan numerosas ventajas y que este tipo de tecnología se esté aplicando en múltiples áreas. Entre las ventajas se incluyen:

 

Aprendizaje Adaptativo. Capacidad de aprender a realizar tareas basadas en un entrenamiento o en una experiencia inicial.

 

Auto-organización. Una red neuronal puede crear su propia organización o representación de la información que recibe mediante una etapa de aprendizaje.

 

Tolerancia a fallos. La destrucción parcial de una red conduce a una degradación de su estructura; sin embargo, algunas capacidades de la red se pueden retener, incluso sufriendo un gran daño.

 

Operación en tiempo real. Los cómputos neuronales pueden ser realizados en paralelo; para esto se diseñan y fabrican máquinas con hardware especial para obtener esta capacidad.

 

Fácil inserción dentro de la tecnología existente. Se pueden obtener chips especializados para redes neuronales que mejoran su capacidad en ciertas tareas. Ello facilitará la integración modular en los sistemas existentes [4].

 

Por: Lourdes Morocho

REFERENCIAS:

[1]  Blanco, Vega Ricardo, Extracción de Reglas de Redes Neuronales Artificiales, Universidad Politécnica de Valencia, Departamento de Sistemas Informáticos y Computación, tomado de PresentaER.pps, disponible en: http://www.dsic.upv.es/~rblanco

[2]  Introducción a las Redes Neuronales, Xavier Padern disponible en:

http://www.redcientifica.com/doc/doc199903310003.html

 

[3] Aprendizaje Automático: conceptos básicos y avanzados (2006), Basilio Sierra Araujo.

[4] Universidad Tecnológica Nacional – Facultad Regional Rosario Departamento de Ingeniería Química Grupo de Investigación Aplicada a la Ingeniería Química (GIAIQ). Redes Neuronales: Conceptos Básicos y Aplicaciones.pdf

 




    Responder

    Introduce tus datos o haz clic en un icono para iniciar sesión:

    Logo de WordPress.com

    Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

    Imagen de Twitter

    Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

    Foto de Facebook

    Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

    Google+ photo

    Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

    Conectando a %s



A %d blogueros les gusta esto: