Modelos Ocultos de Markov – Arquitectura

Los Modelos Ocultos de Markov (HMM) representan un proceso en el cual se refleja un alto grado de probabilidades, probabilidades que generan una secuencia de acciones o eventos que se pueden observar, lo que no ocurre con el proceso de probabilidad utilizado, este no es observable, pero sí afecta directamente a la secuencia de acciones que lo son. Los Modelos Ocultos de Markov pueden ser definidos como un modelo de un proceso, el cual genera una secuencia de acciones o eventos de un dominio específico.

La principal meta de los HMM es identificar los valores desconocidos u ocultos de la secuencia de acciones generada a partir de valores o parámetros observables. “Un HMM se puede considerar como la red bayesiana dinámica más simple”. Los valores que se obtengan, son analizados y sus resultados pueden ser utilizados para desarrollarlas distintas aplicaciones como: reconocimiento de patrones, Traducción automática, Bioinformática, etc.

Según el desarrollo de dichas aplicaciones o el análisis que se requiera se utiliza una arquitectura de Modelos Ocultos de Markov. Esta arquitectura viene dada por el número de estados (variable aleatoria) que lo componen y las transiciones o conexiones entre los estados. De igual manera ocurre en las redes neuronales, su arquitectura depende mucho del número de neuronas (estados) y las transiciones entre estas (conexiones sinápticas). Existen dos modelos principales que representan la arquitectura de un HMM: Modelos HMM de izquierda a derecha y Modelos HMM ergódicos.

En los modelos de izquierda a derecha, los elementos o las probabilidades que genera las acciones o eventos deben cumplir con una condición Aij = 0, donde j<i. Esto significa que, si el modelo se encuentra en un determinado tiempo (t), en el siguiente instante (t+1), el modelo permanecerá con el mismo valor de probabilidad Aii, de no ocurrir esto, el modelo pasará a un estado j-ésino con una probabilidad Aij. Este modelo es idóneo para aquellas aplicaciones en los cuales se sigue un proceso secuencial, por ejemplo: la identificación de blancos aéreos, en los cuales se utiliza una secuencia de entrenamiento para cada objetivo basados en un conjunto de observaciones almacenadas en un array.

Lo contrario ocurre con los modelos ergódicos, estos pueden evolucionar desde cualquier estado a otro en un número finito de transiciones, todas las transiciones son posibles. Este modelo es aplicado en proceso en los cuales se produce una toma de decisiones, otro ejemplo claro, es el reconocimiento de gestos, en el cual se utiliza una base de entrenamiento construida en base a la información obtenida de los gestos, esta base se ajusta a los valores, se la interrelaciona y se obtiene los resultados.

Los modelos deben ser seleccionados según la aplicación, deben ser ejecutados adecuadamente y cumplir con las condiciones que en cada modelo se estimen pertinentes.

Autores:

Daniel Valdivieso

Diego Guamán




    Responder

    Introduce tus datos o haz clic en un icono para iniciar sesión:

    Logo de WordPress.com

    Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

    Imagen de Twitter

    Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

    Foto de Facebook

    Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

    Google+ photo

    Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

    Conectando a %s



A %d blogueros les gusta esto: